Precalculus

1-03 Linear Equations in Two Variables

Slope-intercept form

- y = mx + b
 - o *m* = _____(rate of change)
 - o (0, b) = _____
- $y = b \rightarrow$ _____line
- $x = a \rightarrow \underline{\hspace{1cm}}$ line

To graph a line (shortcut)

- 1. Plot _____
- 2. Follow the ______to get a couple more points
- 3. Draw a _____through the points

Find the slope and *y*-int and graph y = 3x - 4

Slope

- $slope = \frac{rise}{run}$
- $\bullet \qquad m = \frac{y_2 y_1}{x_2 x_1}$
- If slope is
 - $\circ \quad m > 0 \to \underline{\hspace{1cm}}$
 - $\circ \quad m = 0 \to \underline{\hspace{1cm}}$
 - $\circ \quad m < 0 \rightarrow \underline{\hspace{1cm}}$
 - \circ *m* undefined \rightarrow _____

Find the slope of the line passing through (-3, -2) and (1, 6)

Write	inear Equations
1.	Find(<i>m</i>)
2.	Find aon the line (x_1, y_1)
3.	Useform $y - y_1 = m(x - x_1)$
	ope-intercept form of the line passing through $(2, 4)$ with $m = 3$.
Paralle	I and Perpendicular Parallel →slope
•	Perpendicular → slopes are
•	$ m_1 \cdot m_2 = -1 $
Find th	e equation of the line passing through (2, 1) and perpendicular to $4x - 2y = 3$.